
Atomic motions in the crystalline Al50Cu35Ni15 alloy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 4021

(http://iopscience.iop.org/0953-8984/12/17/309)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 04:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/17
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 4021–4041. Printed in the UK PII: S0953-8984(00)09088-3

Atomic motions in the crystalline Al50Cu35Ni15 alloy

U Dahlborg†, W S Howells‡, M Calvo-Dahlborg† and J M Dubois†
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Abstract. This paper describes quasi-elastic neutron scattering experiments on the Al50Cu35Ni15
alloy performed on the IRIS spectrometer at ISIS, Rutherford Appleton Laboratory, and on the
MIBEMOL spectrometer at Laboratoire Léon Brillouin, Saclay. The aim was to investigate if
atomic hopping motions are restricted only to occur in systems with quasicrystalline local order.
It is found that frequent jumps of Cu and Ni atoms between different interstitial lattice positions
on the time scale 1 to 100 ps are taking place in this alloy at high temperature. This is the same
time scale that has been found earlier in quasicrystals and it suggests that this kind of motion is
likely to take place in any metallic alloy at high temperature and that it is not a special property of
quasicrystals.

1. Introduction

In crystalline solids the atoms occupy well defined equilibrium positions. However, the
presence of defects in the crystalline lattice makes it possible for atoms to move. Several
different mechanisms have been found responsible for this ability. In metals and alloys close to
the melting point, where the vacancy concentration is of the order of 10−4, the main mechanism
is jumps to nearest-neighbour sites but also, to some extent, to next-nearest-neighbour sites
[1, 2]. Usually the diffusion coefficient obeys an Arrhenius law but in some cases, mainly
for bcc structures, the Arrhenius plots show an upward curvature, which indicates that several
different mechanisms, are at work. The experimental studies of the diffusion mechanisms in
crystal lattices have been mainly done by neutron quasielastic scattering because it can yield
accurate microscopic information both on the geometry and the time scale of the atomic jump
motion [3]. An excellent review of the diffusion phenomenon in metals and alloys has recently
been published [4].

In recent years extensive experimental investigations of the structure and dynamics of
quasiperiodic alloys or quasicrystals (QC) and their approximants have been carried out. The
details of the elementary excitations in QC materials are considerably different from those
in periodic systems. One reason is the fundamental aperiodicity of these structures and, as
a consequence, the concept of the Brillouin zone is ill defined. The aperiodicity implies the
existence of additional dynamical excitations, either collective (phason modes) or individual
(phason flips). These are, in this context, to be considered as defects that occur when the
quasicrystalline matching rules are not fulfilled. Phasons are accordingly to be associated with
an atomic motion of diffusive nature. A scheme for atomic transport in quasicrystals which
is a combination of the basic mechanism in ordinary materials, i.e. moving vacancies, and of
atomic jumps in a double-well potential, was devised by Kalugin and Katz [5]. It should be
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emphasized that the existence of dynamical phasons has been a key issue for the description
of the properties of quasicrystals.

Recently, the first evidence for atomic hopping at high temperature in a quasicrystalline
structure, a perfect icosahedral quasicrystal of composition Al62Fe25.5Cu12.5, was found by
using the neutron quasielastic scattering technique [6]. Using the isotope substitution technique
it was possible to conclude that the observed quasi-elastic scattering component was originating
from the motion of Cu atoms on a picosecond time scale and that this motion was confined
in space. Later, measurements by Mössbauer spectroscopy and the neutron back-scattering
technique have shown that Fe atoms perform a hopping motion as well but at a much slower
time scale (nanosecond) than that of Cu atoms [7, 8]. Later, hopping of Mn atoms at high
temperature was shown to also take place in the AlPdMn system [9]. A comprehensive review
of these results and their interpretation has recently been presented [10]. Hopping of Al atoms
in the sub-kHz range at low and very low temperatures has also been found by applying the
NMR technique on the quasicrystalline system Al70Pd21.4Re8.6 [11].

Some work has also been carried out on parent crystalline phases of quasicrystals.
Experiments performed on the cubic β-phase of Al50Fe25Cu25 [6] did not give any evidence
for atomic hopping while the quasi-elastic neutron signal was found to be the same in
rhombohedral and icosahedral phases of Al62.5Cu26.5Fe11, showing that atomic hopping is
taking place in this approximant (see for example [10]). This is a particularly important result
because the hysteresis of the reversible rhombohedral-to-icosahedral transition allowed the
two measurements to be performed at the same temperature.

In this report the neutron scattering technique has been used to investigate the atomic
dynamics in the Al50Cu35Ni15 alloy. In the long-range ordered structures of the Alx-(Cu,Ni)1−x
system, designated as t phases, the Al atoms form a primitive rhombohedrally deformed cubic
lattice while in the cube centres Cu/Ni atoms and vacancies form a pseudo-binary system along
the (111) axis [12, 13]. It was later pointed out that the number of layers in the different τ phases
form a Fibonacci sequence, thus indicating the close resemblance between the vacancy ordered
bcc and the quasicrystalline structures [14]. The AlCuNi alloy can thus be considered as a
one-dimensional quasicrystal. The structural similarity between the CsCl and the decagonal
quasicrystalline phases has also been suggested from positron annihilation measurements
(PAM) on several materials of both kinds [15]. Furthermore, these experiments showed the
presence of free volumes of the size of a lattice vacancy in the CsCl structure. It should be
mentioned that PAM has also indicated that a high density of vacancy type structural defects
exists in the AlPdMn icosahedral quasicrystal [16]. In addition, radiotracer measurements in
combination with serial sectioning of AlPdMn quasicrystalline samples have shown that the
diffusion is not significantly different from those in related crystalline materials [17, 18]. The
aim of the present study is thus to investigate if atomic hopping at a large rate is restricted
to taking place in systems with quasicrystalline local order or if it exists more generally in
metallic alloys at high temperatures.

2. Experimental details and sample characterization

Three series of measurements have been performed on the backscattering spectrometer IRIS
at the ISIS neutron spallation source, Rutherford Appleton Laboratory (RAL), UK. The
wavelength of the neutrons was in all cases 6.6 Å and the energy resolution about 15 µeV.
Neutron energy transfers E in the range −0.4 to 0.4 meV were covered. The angular span of
the 50 detector elements utilizing the 002 reflection from pyrolytic graphite for energy analysis
of the scattered neutron ranges from 25 to 155 degrees. Thus, momentum transfers Q in the
range 0.5 < Q < 1.84 Å−1 could be covered. In order to improve the statistics, the measured



Atomic motions in the crystalline Al50Cu35Ni15 alloy 4023

spectra were merged into groups of 5 (except for the group at the lowest Q which because of
large background, only contained spectra from two detectors), yielding aQ resolution varying
from about 0.2 Å−1 at the smallest Q to about 0.05 Å−1 at the largest Q.

One set of measurements was performed on the MIBEMOL time-of-flight spectrometer
at Laboratoire Léon Brillouin, Saclay, France. The wavelength of the incident neutrons was
5 Å and spectra were recorded in 72 detectors at scattering angles between 26 and 142 degrees.
This implies that a Q range from about 0.6 to about 2.4 Å−1 was covered. The energy
resolution was about 0.18 meV. In order to obtain spectra with good statistical accuracy only
two samples were investigated, the one containing natural elements and the one with ‘null
scattering’ nickel. Spectra were recorded at the same temperatures as were measured in the
second series of measurements on IRIS, 570 ◦C and 920 ◦C. The intensities recorded in the
72 detectors were merged into 10 spectra, ranging in Q from about 0.5 to about 2.4 Å−1.
However, with respect to elastic intensities the statistical accuracy was sufficient for use of
spectra measured in single detectors.

The powder samples of nominal composition Al50Cu35Ni15 were contained in 5 cm high
cylinders of single-crystalline sapphire with an outer diameter of 7 mm and a wall thickness of
0.5 mm. The alloys were produced by cold pot melting and coarsely ground. The masses of
the samples were in the range 3 to 4 g yielding an average transmission larger than 95%. The
c-axis of the sapphire was in the direction of the cylinder axis (perpendicular to the neutron
beam) which made it possible to avoid any Bragg scattering originating from the container. It
should be mentioned that before recording every spectrum checks were performed to establish
that no Bragg peak from the sapphire could be seen. As a matter of fact, out of more than
15 individual measurements it was only once that the container had to be rotated to avoid
any Bragg scattering in the covered range of scattering angles. The sapphire container was
held in a thin-walled tube of Nb attached to a centre stick in a furnace. No Bragg scattering
from niobium is possible because of the large neutron wavelength used. In the first series of
measurements on IRIS a sample of natural composition was studied in 50 degree intervals from
room temperature up to 950 ◦C. In the second and third series three samples were investigated,
one containing natural elements (denoted below as the n–n–n sample), one containing natural
Al and Cu and ‘null matrix’ Ni (denoted below as the n–n–0 sample), and a third one containing
natural Al, the copper-65 isotope and ‘null matrix’ Ni (denoted below as the n–65–0 sample).
The ‘null matrix’ Ni was achieved by mixing the nickel-60 and nickel-62 isotopes in a ratio such
that the scattering length for coherent scattering was zero. In order to study the temperature
dependence spectra of scattered neutrons were recorded at 570 and 920 ◦C in the second series
of measurements while in the third series spectra were recorded only at 920 ◦C. On MIBEMOL
only two samples, the one with natural composition (n–n–n) and the one with ‘null matrix’
Ni (n–n–0), were studied both at 570 and 920 ◦C. In all measurements the same samples have
been used.

Table 1. Contributions to the total scattering cross sections of the three investigated samples. The
absorption cross sections are given for a neutron wavelength of 1.8 Å.

Total cross sections per
Coherent contributions: αij scattering unit

Sample Al–Al Cu–Cu Ni–Ni Al–Cu Al–Ni Cu–Ni Coherent Incoherent Absorption

NAlNCuNNi 0.374 0.917 0.300 1.170 0.670 1.049 4.48 1.86 2.11
NAlNCu0Ni 0.374 0.917 0 1.170 0 0 2.46 1.56 2.30
NAl65Cu0i 0.374 1.733 0 1.610 0 0 3.72 2.57 1.74
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The measured quasielastic spectra were corrected for empty container scattering (measured
at the appropriate temperature) and normalized to absolute cross section units via a vanadium
calibration measurement. Multiple scattering was considered to be small because of the large
neutron transmission of all samples together with the relatively large absorption cross section
(compare table 1). All spectra have been divided by the sample mass in order to facilitate
intensity comparisons.

3. Theoretical background

The total dynamic scattering function Stot (Q,E) per atom for a multi-component alloy can
generally be written as

σS(Q,E) =
n∑
i,j

αij Sij (Q,E) +
n∑
i

βiS
inc
i (Q,E) (1)

where i, j represent the component atoms and n is the number of different kinds of atoms
in the alloy. Sij (Q,E) and Sinci (Q,E) are the partial coherent and the incoherent scattering
functions, respectively, and αij and βi are weight factors for the partial scattering functions.
These are given by αij = 4πcicjbibj and βi = ciσ

inc
i , with ci and bi being the concentration

and the bound atom scattering length of atom i, respectively. σ inci is the incoherent scattering
cross section for atom i and σ is the total scattering cross section for the alloy

σ = 4π
n∑
i,j

cicj bibj +
n∑
i

ciσ
inc
i . (2)

The αij factors and the total coherent, incoherent and absorption cross sections are given in
table 1.

4. Crystalline structure

The presence of decagonal quasicrystals in the AlCuNi system around the relative composition
65–20–15 has been reported in [19, 20]. However, the decagonal phase has always been found
to coexist with the vacancy ordered bcc CsCl phase. In order to obtain a sample as close as
possible to a single phase, alloys of several compositions were produced and investigated
by x-ray diffraction and differential scanning calorimetry. From these investigations the
Al50Cu35Ni15 alloy was found to be the one most suitable for further studies.

In order to determine the structure of the samples two sets of high-resolution neutron
diffraction measurements were performed on the LAD diffractometer, also at the ISIS neutron
spallation source. One set of measurements aimed at checking the structure of the three
samples to be used on IRIS and the other set aimed at following the structural changes in a
sample consisting of natural elements in the temperature interval 20 ◦C < T < 1000 ◦C. The
diffraction patterns, obtained at 20 ◦C, of the three IRIS samples are shown in figure 1(a). The
peaks can be indexed according to a bcc structure with a lattice constant of 4.122 ± 0.002 Å.
There are, however, some very weak intensity lines which might indicate that the alloy is not
a single phase or that a superstructure exists in the alloy at 20 ◦C. Apart from the differences
between the three patterns due to the isotope substitution, there are some small differences but
these are believed to have a negligible influence on the results presented below. The diffraction
patterns measured at different temperatures for the sample consisting of natural elements are
shown in figure 1(b). The small difference between the two patterns for the n–n–n sample in
figures 1(a) and 1(b), (see the peak at 1.6 Å−1) stems from the two facts that the patterns were
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recorded at different occasions and that this sample is not completely polycrystalline and thus
not completely isotropic. The alloy passes through another phase in the temperature region
500 to 600 ◦C. Above this temperature the alloy seems to consist of only one phase which is
in accordance with earlier investigations [20]. A complete structural analysis is under way. It
should be mentioned that according to [21] the solidus of the alloy is at about 1150 ◦C and the
liquidus at about 1400 ◦C. Accordingly, during all measurements the samples have been in the
solid phase which has also been confirmed by differential scanning calorimetry measurements.

Figure 1. (a) Diffraction patterns measured at room temperature for the three investigated samples.
The patterns from the n–n–0 and n–65–0 samples have been shifted +2 and +4 intensity units,
respectively. (b) Diffraction patterns, each displaced +1 intensity unit relative to the one at the
preceeding temperature, at the different indicated temperatures for the n–n-n sample.

As can be seen in figure 1(b) all Bragg peaks remain sharp with a width given by the
instrumental resolution (�Q/Q ≈ 1.2% ) even at the highest temperature with the exception of
a small feature at about 4.6 Å−1. However, at the foot of the (200) Bragg peak atQ = 3.06 Å−1,
and it seems only at this peak, a diffuse scattering component starts to be visible at about 700 ◦C
and grows with increasing temperature. The intensity of such a diffuse component close to
Bragg peaks (the so-called Huang scattering) gives information about the presence of point
defects [22]. As the Debye–Waller factor for AlCuNi is small, it can be concluded that the
distortion of crystalline lattice created by the defects is small but long-ranged. The magnitude
of the scattering intensity is in such a case determined by the elastic constants of the crystal and
the force dipole tensor [22]. According to theory the intensity should vary as (Q−G)−2 when
Q approaches the reciprocal lattice vector G. This is in agreement with the experimental
observation. In order to quantify the magnitude of the distortion the shape of the diffuse
intensity was approximated by a Lorentzian function centred at the reciprocal lattice point.



4026 U Dahlborg et al

The width of the fitted Lorentzian was in all cases found to be the same within the fitting errors
and considerably smaller than the Q resolution which gives confidence in the procedure. The
area of the Lorentzian function is shown in figure 2. At temperatures where two points can be
seen one corresponds to the heating cycle (circles) and the other to the cooling cycle (triangles).
Assuming that the measured diffuse intensity is governed by an Arrhenius law, an activation
energy of 0.60 ± 0.04 eV is obtained (the full curve in figure 2). This value is close both to the
activation enthalpy for single-vacancy formation and for atomic migration in pure aluminium
but considerably smaller than in pure nickel and copper (see table 2). However, it is twice as
high as those calculated for other bcc structures at high temperature (β-Ti, β-Zr, β-Hf) (see
[25] for details).

Figure 2. The temperature dependence of diffuse scattering intensity at the foot of the (200)
diffraction peak during heating (circles) and subsequent cooling (triangles) of the n–n–n sample.
The full line is a fit of an exponential function to the measured points.

Table 2. Some data for the pure elements in the Al50Cu35Ni15 alloy.

Atomic radius in a Activation enthalpy of Activation energy of
12 coordination single-vacancy formation atomic migration in pure

Element environment [23] (Å) in pure element [24] (eV) element [24] (eV)

Al 1.432 0.67 ± 0.03 0.61 ± 0.03
Ni 1.246 1.79 ± 0.05 1.04 ± 0.04
Cu 1.278 1.28 ± 0.05 0.70 ± 0.02
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5. Results from the high resolution measurements on the IRIS spectrometer

One example of a measured spectrum from the sample containing ‘null matrix’ Ni and 65Cu
and held at 920 ◦C is shown in figure 3. The broken line is the resolution function, as given by
the vanadium calibration run. It is obvious that there is a small but significant extra intensity
contribution at the foot of the measured spectrum indicating the existence of a quasielastic
scattering component. In order to isolate this, it was decided to apply a Bayesian method of
analysis [26] available for users on IRIS. One of the advantages in using the Bayesian method
of analysis is that it is completely unbiased and thus, no feature which is not in the data can
be extracted from them. As the quasielastic scattering component is small and the statistical
noise of considerable amplitude, it was also decided not to try to make any line shape analysis
but to just assume that the quasielastic scattering can be described by one single Lorentzian
function.

Figure 3. The quasielastic spectrum in the near elastic energy region from the n–n–0 sample
at 920 ◦C measured on the IRIS spectrometer. The broken line shows the resolution function
normalized to peak maximum and the full line the fitted sum of one elastic and one quasielastic
contribution of Lorentzian shape, convoluted with the resolution function according to equation (3).
The dotted line shows the quasielastic component. The phonon background is very small and it is
not visible in the scale of the figure.

From these general considerations the measured spectra were, assuming thatQ is constant
over the covered energy transfer range at one scattering angle, described by an expression of
the type

S(Q,E) = C[A0δ(E) +
N∑
j=1

Aj

π

Wj

E2 +W 2
+ B(E)] ⊗ R(E) +N(E) (3)

where C is a coupling constant, E the neutron energy transfer, Aj and Wj are amplitudes
and half widths at half height of the different scattering contributions, respectively, R(E) the
resolution function, B(E) a background of inelastic scattering and N(E) the statistical noise.
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Figure 4. Elastic intensities measured at 920 ◦C on the IRIS spectrometer. Filled circles: 570 ◦C,
triangles: 920 ◦C (second series), filled squares: 920 ◦C (third series). (a) n–n–n sample, (b)
n–n–0 sample, (c) n–65–0 sample. (d) Total intensity of the elastic peak from the third series
of measurements on IRIS. Filled circles: n–n–n sample, triangles: n–n–0 sample, filled squares:
n–65–0 sample. The curves are included to guide the eye.

⊗ denotes convolution. As can be seen in figure 3 (full curve), a very good agreement between
experiment and calculation is obtained by this procedure, giving support to the interpretation
that the measured spectrum is consisting of two components, one elastic and one quasielastic
component (broken and dotted curves, respectively). There is a small difference between
the measured spectrum and the fitted curve in the wings, which might indicate the presence
of another intensity component. However, the statistics are not good enough for a definite
conclusion. It should be mentioned that in no case was it possible to describe the entire
quasielastic spectrum by a curve constructed only by a convolution of a single Lorentzian and
the resolution function, i.e. without a strictly elastic scattering component.

The intensities integrated within the resolution window, i.e. the elastic scattering
components, at 570 ◦C and 920 ◦C for the different measurements are shown in figure 4 while
the total intensity and the width of the quasielastic component, obtained from an analysis
according to equation (3) of the third series of measurements on IRIS, are shown in figure 5.
For comparative reasons figure 4(d) displays the elastic intensities measured for the three
samples in the third series of measurements. For the 570 ◦C data and for Q less that 0.9 Å−1

for the 920 ◦C data, it was not possible to isolate a quasielastic component with reasonable
confidence. Several qualitative remarks can be made:

• The results from the different sets of measurements are reproducible and consistent. Both
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Figure 5. (a) Intensity and (b) full width at half maximum (FWHM) of the quasielastic peak at
920 ◦C from the third series of measurements on IRIS. Circles: n–n–n sample; triangles: n–n–0
sample; squares: n–65–0 sample. The lines are included to guide the eye. The resolution of IRIS
is about 15 µeV.

these facts indicate that no annealing effects occur in the samples after repeated heating.
• The structure of all samples at 570 ◦C is different from the structure at 920 ◦C and that

agrees with the results from the diffraction measurements.
• The elastic intensity for the isotope containing samples varies in a smooth manner withQ

and its magnitude increases with temperature. There are no obvious signs of Bragg peaks,
even in single detectors, atQ values other than those found in the diffraction measurements
(see figure 1).

• The elastic intensity from the sample of natural composition does not vary significantly
with temperature except at Q values where neighbouring Bragg peaks have an influence
(around Q = 1.3 Å−1 and for large Q).

• In view of the cross section values given in table 1, the elastic intensity is lower than
expected for the sample of natural element composition.

• The Q variation of the quasielastic intensity component is different for n–n–n samples
compared to the isotope containing ones.

• The width of the quasielastic peak is, within the error bars, the same for all samples and
is constant for Q values less than about 1.7 Å−1 above which it increases.

When comparing intensities from the different samples it has to be stressed that if a
superstructure exists in the alloys, a coherent contribution may appear in the Q range of
figure 4(a) and this would make any comparison of elastic intensities meaningless. However,
as mentioned above, no signs of Bragg peaks supporting the existence of a superstructure at
920 ◦C were seen in the diffraction measurements.
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Figure 6. Spectra in the near elastic energy region measured on the MIBEMOL spectrometer in an
enlarged scale for Q = 2.01 Å−1. The different intensity components are shown as solid curves.
(a) n–n–n sample, (b) n–n–0 sample.

The results presented in figures 4 and 5 exhibit several features, which cannot be interpreted
directly. To take one example, why is the intensity from the n–n–n sample so low compared
to the isotope containing ones? One possible explanation is that, at least, some Ni atoms
are moving very fast, either by continuous or by jump diffusion, in the crystalline lattice.
In this case these atoms will contribute to the quasielastic peak and not to the elastic one.
This quasielastic peak will be very wide and, because of the very good resolution of the IRIS
spectrometer, it will appear in the measured spectra as a flat background. It was in order
to investigate this possibility that the measurements on the MIBEMOL spectrometer were
performed.

6. Results from the measurements on the MIBEMOL spectrometer

In the MIBEMOL spectra a quasielastic scattering component could also be seen at 920 ◦C
while it was absent at 570 ◦C. In order to separate the elastic and quasielastic scattering
the spectra were fitted using a least squares method by an analytical expression consisting
of a sum of three terms: the resolution function, which describes the elastic component,
a convolution of a Lorentzian and the resolution function, which describes the quasielastic
component, and a sloping linear background, which simulates the phonon background. In all
cases good agreement between calculated and measured spectra could be obtained. However,
some systematic differences between the fitted curves and measured data do exist which might
indicate that the quasielastic scattering is not adequately described by a single Lorentzian
function. The statistical accuracy of the data does though make a detailed line shape analysis
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meaningless. Two examples of fitted curves are shown in figure 6.
The amplitudes of the elastic and the quasielastic scattering components as well as the

width of the quasielastic peak, obtained from the fits, are shown in figure 7. It can be seen that
the elastic intensity does not, apart from the Bragg peaks, vary much with temperature and
that the quasielastic intensity at high temperature is very similar for the two samples while the
width of the quasielastic peak is different.

Figure 7. Results obtained from the fits of the MIBEMOL data. (a) Elastic intensities for the
n–n–n sample. Dotted line: 570 ◦C, full line: 920 ◦C. (b) Elastic intensities for the n–n–0 sample.
Dotted line: 570 ◦C, full line: 920 ◦C. (c) Total intensity and (d) FWHM of the quasielastic peak.
Filled circles: n–n–n sample, triangles: n–n–0 sample. The curves are included to guide the eye.
The experimental resolution was about 0.18 meV.

7. Discussion

7.1. Possible models to interpret the results

The variations of amplitude and width of the two scattering components exhibit several distinct
features, which at first sight are not compatible. The existence of a quasielastic contribution
shows that some kind of diffusive motion takes place in the alloy at high temperature. The
diffuse scattering observed in the diffraction patterns also indicates that the crystalline lattice
is distorted at high temperature and that the distortion field is asymmetric. Thus, in order
to interpret the results presented in figures 4, 5 and 7, several different possibilities have to
be considered. An important observation in this respect is that the quasielastic scattering
component in all samples, when it exists, is small compared to the elastic one, only of the
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order of a few percent. This indicates that only relatively few atoms are involved in the
diffusion process. Two different kinds of diffusion processes can be identified: (a) diffusion
in a restricted volume and (b) long-range diffusion. In the first case the derived scattering
functions contain an elastic peak while in the second no strictly elastic scattering occurs. We
give below a brief outline of the models, which might describe the obtained results. A full
account of some of the models can be found in [3].

a. Diffusion in a restricted medium

(1) Atoms are jumping back and forth between N energy equivalent lattice sites which are
separated by a distance d . No atomic transport is taking place but the sites make up a cluster
of vacancies and/or interstitial sites. The scattering function per atom is for a powder given by
[3]

S(Q,E) = 1

N
e−2W

[
(1 + (N − 1)j0(Qd))δ(E) + (N − 1)(1 − j0(Qd))

1

π

"

E2 + "2

]
(4)

e−2W is the Debye–Waller factor, j0 is the spherical Bessel function of zero order and
G = h/2pt , where t is the residence time in one position and h the Planck constant. The jump
between the two sites is assumed to be instantaneous. If several jump distances are involved
equation (4) will be more complicated but it will have a similar structure. Thus, a measured
spectrum, according to this model, will exhibit an elastic peak whose amplitude is oscillating as
a function ofQ and a quasielastic peak whose amplitude varies withQ while the width shows
no Q dependence. Several jump directions and lengths, implying a Q dependent t , may exist
but in the present case of a polycrystalline sample this effect will, to a large extent, be averaged
out and not possible to detect. This model thus agrees qualitatively with the experimental
results.

(2) Atoms are jumping between two non-equivalent sites. In this case the scattering function
may formally be written as [3]

S(Q,E) = [1 − C(1 − j0(Qd)]δ(E) + C[1 − j0(Qd)]
1

π

γ

E2 + γ 2
(5)

where C and γ are constants depending on the residence times of an atom in the two
sites. This model has been further developed in terms of phonon-assisted hopping [10] and
it has satisfactorily explained the temperature dependence of the quasielastic scattering in
quasicrystals. The general feature of this model is according to equation (5) that both the
elastic and the quasielastic intensity vary with Q while the width of the quasielastic peak is
constant. The constants C and γ are likely to be temperature dependent. If more than two
sites for the jumping atoms are available, S(Q,E) is considerably more complicated than
equation (5). This model or a slightly modified one might be used to analyse the present data
but as the temperature dependence of S(Q,E) is unknown, such an analysis will not give an
unambiguous interpretation.

(3) Atoms are performing a Brownian motion in a cage. The case of perfectly reflecting walls of
a cage of spherical shape has been treated by Volino and Dianoux [27] and recently generalized
by Cvikl et al [28] to a cage with partially absorbing walls. In both cases the scattering function
consists of a sum of an elastic and a quasielastic component with the latter consisting of the
sum of a large number of Lorentzian functions of different widths. The intensity of the elastic
peak is controlled by the factor [3j1(QR)/QR)]2, where R is the radius of the cage. This
expression is, for values ofQR relevant to our case, a monotonically decreasing function. The
quasielastic intensity is correspondingly increasing with Q . However, the most interesting



Atomic motions in the crystalline Al50Cu35Ni15 alloy 4033

feature of this model is that it predicts a constant width of the quasielastic peak up to a value
of Q which depends on the cage radius. For large Q the width approaches DQ2 (D is the
diffusion constant) as in model (5) below. This model may possibly describe the results but in
order to make a proper analysis, data over a largerQ range than presently available are needed.

b. Long-range diffusion

(4) Atoms are moving via a random-walk process between geometrically equivalent sites in the
crystalline lattice. This case was first treated by Singwi and Sjölander [29] and by Chudley
and Elliott [30] and later generalized to include interstitial sites in a bcc lattice by Rowe et al
[31]. The scattering function is essentially given by

S(Q,E) =e−2W 1

π

"(Q)

E2+"(Q)2
(6)

where G(Q) depends on Q and on the atomic jump frequency and the jump geometry. The
cross section is thus given by a Lorentzian function whose total intensity is varying as e−2W and
whose width is oscillating withQ . In the isotropic version of this model which is appropriate
to our case G(Q) is given by

"(Q) = h̄

τ
(1 − sin(QL)

QL
) (7)

where L is the jump distance and t the residence time. This model does not describe the
measured quasielastic scattering satisfactorily.

(5) Atoms are diffusing in the crystalline lattice as in a continuous medium. S(Q,E) is in
this case is given by equation (6) with G(Q) = DQ2 where D is the diffusion constant. This
model does not describe the data.

(6) Atoms are diffusing according to various point-defect mechanisms. In this so-called
‘encounter’ model [32] all interactions between an atom and a particular point defect are
taken into account. The scattering function has a form given by equation (6) with G(Q)
defined by

"(Q) = h̄

τenc
[1−henc(Q)] (8)

where τenc is the mean time between successive encounters of an atom with different point
defects. Both τenc and henc(Q) depend on the details of the diffusion mechanism. To be
applicable to our case S(Q,E) has to be averaged over all directions of Q. This model does
not describe the data satisfactorily.

In table 3 the characteristic features of the different models are collected as well as the
experimental results obtained from the experiments on IRIS and MIBEMOL. In cases where
the models predict no elastic scattering, an elastic peak has nevertheless been incorporated as
all atoms are not participating in the diffusive motion. Thus, the elastic intensity will vary
according to the Debye–Waller factor for the vibrating atoms. It should also be noticed that
in all models listed above

∫
S(Q,E) dE = exp(−2W). From a comparison of the features of

models and experiments it is concluded that the most appropriate model for further analysis is
model (1).

7.2. Neutron scattering fundamentals

In order to obtain a firm basis for understanding both the IRIS and the MIBEMOL results and
to be able to join them in an appropriate way, we present before entering into discussions, a
brief background of neutron scattering fundamentals from an experimental point of view.
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Table 3. CharacteristicQ dependent features of different models for atomic diffusion in crystalline
lattices in the Q range relevant to the experiments in this work.

Q variation of quasielastic peak
Q variation of elastic
peak intensity Intensity Width

Model 1 oscillating oscillating constant

Model 2 oscillating oscillating constant

Model 3 monotonously continuously constant, increasing
decreasing increasing for large Q

Model 4 monotonously constant oscillating
decreasing

Model 5 monotonously constant continuously
decreasing increasing

Model 6 monotonously constant oscillating
decreasing

IRIS experiment (n–n–n) increasing (n–n–n) decreasing for all samples:
at 920 ◦C (n–n–0) decreasing (n–n–0) peak at 1.5 Å−1 constant for

(n–65–0) decreasing (n–65–0) peak at 1.5 Å−1 Q<1.7 Å−1

MIBEMOL (n–n–n) oscillating (n–n–n) peak at 1.5 Å−1 (n–n–n) constant
experiment at (n–n–0) oscillating (n–n–0) peak at 1.0 Å−1 (n–n–0) decreasing
920 ◦C

It is well known that incoherent scattering probes the dynamics of individual atoms
while coherent scattering probes the relative positions of pairs of atoms at different times.
In a diffraction experiment where an integration over all energies of the scattered neutrons
(hopefully at an almost constantQ) is performed, one is thus getting information on phenomena
at a momentary situation in the sample. A measured diffraction pattern, like the ones shown
in figure 1, is thus a time average over all the snapshots taken and it yields, via the positions
and the intensities of the Bragg peaks, an average distribution of all atoms in the unit cell. The
incoherent scattering contributes only to the background.

A measurement of the elastic intensity component eliminates in principle all time-
dependent effects, which are due to scattering from thermal displacements from equilibrium
positions (phonons). However, the experimental energy resolution �Eres defines the time
interval within which this is valid. The better the resolution the better information one gets on
the details of the time-independent disorder in the scatterer, for example time average values
of atomic displacements. This does not cause a problem for the data interpretation at low
temperatures where the relaxation times for phenomena involving migration of atoms in a
crystalline solid are long. It has, however, to be considered when the migration rate of the
atoms as well as the relative defect concentration is so large that new long-lived structures
might exist from the point of view of coherent scattering. The finite lifetime of a particular
configuration of atoms then reveals itself in the width of a diffuse (or equivalently a quasielastic)
scattering component. Incoherent elastic scattering gives structural information with regard to
the motion of single atoms according to models 1 to 3, discussed above.

The information a quasielastic spectrum contains depends on the energy resolution,�Eres ,
of the spectrometer. In order to put numbers in this discussion it is assumed that the smallest
broadening of the resolution function, which can be observed, is about 0.5 · �Eres and the
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largest one about 5 ·�Eres . The time windows for the IRIS spectrometer is calculated to about
13 � τ � 130 ps and for MIBEMOL to about 1.3 � τ � 13 ps. The scattering from any
process, which has its relaxation time shorter than the lower limits above, is thus hidden in the
phonon background while those with relaxation times longer than the upper limits are hidden
in the elastic peak.

Before going further into the interpretation of the results we would like to comment on
the measured quasielastic scattering components. In all cases this scattering has been found
to be centred around zero neutron energy transfer and it has thus to be considered as really
quasielastic and not originating from degenerating optical phonons. This is also corroborated
by the fact that the measured diffraction patterns do not reveal any indication of a phase
transition in the temperature region 800 to 1000 ◦C.

7.3. Geometry and relaxation time for atomic jumps

One very specific feature of the elastic peak intensities measured both with high resolution
(IRIS) and low resolution (MIBEMOL) from the n–n–n sample is that it does not vary with
Q according to a Debye–Waller factor but instead is increasing with Q. The intensity does
not exhibit any distinct temperature dependence and, furthermore, it is lower than the elastic
intensity from the isotope containing samples. The only models which might explain this
unusualQ variation are those that assume that atoms perform jumps between different sites in
the lattice. Fitting an expression of the type

I (Q)el = C1 + C2[1 + j0(Qd)] (9)

to the MIBEMOL data obtained at 920 ◦C a good description of the measured intensities could
be obtained (see the full curves in figures 8(a) and 8(b)). The ratio between the values of the
fitted curves atQ = 0 turns out to be equal to the ratio between the total incoherent scattering
cross sections per scattering unit of the two samples which gives, even if the extrapolation from
the first experimental point is considerable, both confidence in the applicability of equation (4)
and that the measured intensity is mainly of incoherent origin. If the elastic scattering had
been of coherent origin to a significant amount, its magnitude would have been substantially
affected by replacing the natural Ni by ‘zero coherent scattering’ Ni. This is not the case. The
value of the jump length d was found to be 4.7 Å for the n–n–n sample and 2.9 Å for the
n–n–0 sample. The error in these two values is determined by the positions of the extrema of
the fitted curves and it is estimated to be of the order of ±0.1 Å. Both distances correspond to
interstitial positions of octahedral symmetry, i.e. atoms move from interstitial to next-nearest
and next-next-nearest substitutional sites and vice versa, in the lattice. The jump to the nearest
interstitial position involves a jump length of 2.06 Å. This corresponds to a Q value, which is
not possible to reach with the wavelength of the incident neutrons. It should be noted that, as
shown in figure 7, the elastic intensity measured at 570 ◦C is very similar to the one measured
at 920 ◦C, showing that atoms are also jumping at the lower temperature, although at such a
slow rate that no quasielastic scattering component is seen. If the atomic jumps are to non-
equivalent sites having different potential energy, the parameters C1 and C2 in equation (9) are
expected to be temperature dependent and, accordingly, also the measured elastic intensity. It
can thus be anticipated that atoms are jumping between sites at least approximately equivalent
in energy. However, a direct determination of how many sites are involved in the jumping
cannot be made as all atoms are not jumping but are vibrating most of the time in more or less
permanent positions. Assuming that only two sites are involved the relative values obtained of
the constantsC1 andC2 in equation (9) indicate that about 80% of the atoms contributing to the
elastic intensity are jumping. The agreement between the measured data and the expression
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gets worse forQ larger than about 2 Å−1 which might indicate that the assumption of jumping
between equivalent sites is not entirely correct but that the motion is more complex.

Figure 8. Measured elastic intensities on the MIBEMOL spectrometer. (a) n–n–n sample and (b)
n–n–0 sample. The full curves are fits of equation (9) to the measured points. The points denoted
by squares are measured elastic intensities on the IRIS spectrometer. The dotted curve is included
to guide the eye.

The elastic intensity measured on the IRIS spectrometer varies qualitatively in the same
way as on MIBEMOL (see figure 8). Unfortunately, the amount of vanadium in the calibration
sample at the MIBEMOL is not known accurately enough for an absolute normalization.
Instead, the two sets of data are normalized to the intensity measured at Q = 1 Å−1 for the
n–n–n sample. With this normalization the intensities from the isotope containing samples are
considerably lower on IRIS compared to the MIBEMOL ones indicating that the MIBEMOL
data contain an intensity component which is quasielastic or even inelastic when observed on
IRIS. For Q larger than about 1.6 Å−1 the elastic intensities measured on IRIS from all three
samples increase dramatically at the same time as the corresponding quasielastic intensities
decrease. The increase in elastic intensity cannot be explained in terms of jumping between
equivalent sites. The two effects do not cancel in terms of total intensities, which shows that
they do not correspond to the same physical phenomenon.

As can be seen in figure 4(d), the elastic intensities, measured on IRIS, from the n–n–0 and
the n–65–0 samples have a very similarQ variation. The average of the ratio between the two
sets of data is 2.1 ± 0.3, which is somewhat larger than the ratio between the incoherent cross
sections of the two samples 1.65. Nevertheless, ICu can be isolated from the measurements
of the two isotopic samples by assuming (i) that the elastic intensity can be written as a sum
of two terms, one being the intensity ICu originating from Cu and one Iother including all
other scattering contributions and (ii) that ICu is proportional to the incoherent scattering cross
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section (including the self part of the coherent scattering cross section does not make any
significant difference for the conclusions below). The result is plotted in figure 9 both for 920
and 570 ◦C in a logarithmic scale as function of Q2. If both sets of data are fitted by straight
lines, the slopes are found to be 0.35±0.07 and 0.03±0.03 Å2 at 920 and 570 ◦C, respectively.
In a cubic lattice this corresponds to mean square displacements 〈u2〉 of 1.05 and 0.09 Å2,
showing that Cu atoms have very large motional amplitude at the high temperature. Assuming
that 〈u2〉 at 920 ◦C is determined by atomic jumps between two sites the jump length L is
given by L = (12〈u2〉)1/2 = 2.05 Å. This value, as mentioned above, agrees very well with
the smallest distance between an atomic and an interstitial position in the Al50Cu35Ni15 lattice.
Furthermore, the intensity at the smallest Q value is at both temperatures significantly above
the fitted line, which is in line with the presence of atomic jumps over larger distances.

Figure 9. The elastic intensity on MIBEMOL from Cu at 570 (triangles) and 920 ◦C (circles)
plotted in a logarithmic scale as function of Q2. The lines are obtained by fits of an exponential
function.

The measured quasielastic intensity on IRIS can for Q less than about 1.6 Å−1 be
satisfactorily described by equation (4), the n–n–n sample with a jump length of 4.7 Å and
the n–65–0, as well as the n–n–0, samples with a jump length of 2.9 Å (see the full curves in
figure 10). For larger Q the intensity drops to very small values. None of the models (1)–(6)
above predicts such a behaviour. This is the same Q region where the elastic intensities are
increasing as well as the width of the quasielastic peak. As mentioned above, the ratio between
the quasielastic intensities for the n–65–0 and n–n–0 samples are found is larger than the ratio
between the incoherent scattering cross sections. This indicates that the quasielastic scattering
is not fully incoherent but contains some significant amount of coherent origin. Realizing
that the two intensity distributions in figure 11 have maxima at Q values close to the 1

2 [110]
and 1

2 [200] reciprocal lattice vectors (see figure 1) it can be conjectured that the measured
quasielastic scattering, to a substantial part, can be classified as diffuse scattering resulting
from a dynamic disorder in a structure twice the size of the direct lattice.
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Figure 10. Fits of the second term in equation (4) to measured quasielastic intensities at 920 ◦C
on IRIS. (a) n–n–n sample and (b) n–65–0 sample.

Equation (4) contains a quasielastic intensity component whose width gives a value of
the residence time of an atom in one site. As can be seen from figure 7 the magnitude of the
quasielastic peak on MIBEMOL is about 2% of the elastic one for both the n–n–n and the
n–n–0 samples. As the sum of elastic and quasielastic intensities should vary withQ according
to the Debye–Waller factor, it can thus be concluded that the observed quasielastic peaks are
not corresponding to the observed elastic intensities in the way predicted by equation (4).
This means thatG is much larger than the resolution of the MIBEMOL spectrometer and thus
the relaxation time t is smaller than about 0.7 ps. The corresponding quasielastic intensities
are therefore hidden under the elastic peak and they are not possible to detect within the
experimental limits of error. As the Ni atoms have by far the largest incoherent cross section
it can be corroborated that they are the ones performing the rapid jump motion with a jump
length of about 4.7 Å and on the time scale of less than about 0.7 ps. The 2.7 Å jump has then to
be assigned to Al and/or Cu atoms, but from atomic size considerations and from the structure
of the Al50Cu35Ni15 lattice [23] it is more likely to be Cu atoms. It should be remarked at
this point that a collective jump phenomenon with similar characteristic features has been seen
in neutron quasielastic scattering measurements on the Al62Cu25.5Fe12.5 quasicrystal [10] at
770 ◦C.

The intensity of the quasielastic peaks in the MIBEMOL spectra also exhibits an oscillating
behaviour, which can be described by equation (4). The magnitude of the intensities from
the two samples are very similar and agrees within limits of error with the ratio between the
incoherent cross sections (see table 1). Thus, assuming that the intensity is of incoherent origin,
the expression C1e−2W(1− j0(qd))was fitted to the measured intensities with 2W = 0.03Q2.
The agreement is satisfactory (see the full curves in figure 11) and the values obtained for the
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jump distance d are the same as those obtained from the elastic intensities. However, in this
case the long distance, 4.7 Å, is associated with the n–n–0 sample and the short one, 2.9 Å,
with the n–n–n sample, which is in apparent contradiction to the earlier results. However, this
can be resolved by realizing the importance of the time window accessible by the spectrometer
used. The width of the quasielastic peaks are within limits of error constant and the residence
time of a jumping atom, presumably a Ni atom, in the n–n–n sample is found to be 1.3 ps and
of a Cu atom in the n–n–0 sample 0.95 ps. For both samples the agreement between calculated
and measured intensities is poor forQ larger than 2.2 Å−1, which might be due to the presence
of some other jump length, probably the 2.06 Å jump mentioned above.

Figure 11. Intensity and FWHM of the quasielastic peak measured on the MIBEMOL spectrometer.
(a) n–n–n sample and (b) n–n–0 sample. The full curves are fits of the second term in equation (4)
to the measured points.

The observation that the quasielastic scattering contains a coherent scattering contribution
makes it probable that the increase in elastic intensity at largeQ also has a coherent origin. As
the magnitude of the increase is the same in the n–n–n and n–n–0 samples but approximately
proportional to the Cu coherent cross section, it can be then concluded that this elastic intensity
originates from Cu atoms.

The width of the quasielastic scattering, measured on IRIS, is very similar for all three
samples. The average value of the width forQ smaller than 1.6 Å−1 corresponds to 75 ± 5 ps.
For large Q the width is increasing but as the error bars are large no attempt to interpret this
behaviour has been made.
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8. Conclusions

From the above considerations the following picture of the atomic motions in the Al50Cu35Ni15

alloy appears:

• The elastic intensity measured on MIBEMOL shows that atoms are performing rapid
jumps between at least two sites at both 570 and 920 ◦C. The residence time in one
position is less than 0.7 ps. The jump lengths involved are 4.7 Å, assigned to Ni atoms and
2.7 Å, assigned to Cu atoms. The distances correspond to jumps between substitutional
and next-nearest and next-next-nearest octahedral interstitial positions in the lattice.

• The quasielastic scattering at 920 ◦C on MIBEMOL indicates the presence of one jump
process on the length scale 2.7 Å and relaxation time 1.3 ps, probably to be assigned to
Ni atoms, and a further jump process on the length scale 4.7 Å and relaxation time 0.95
ps, probably to be assigned to Cu atoms. At 570 ◦C, no quasielastic scattering is observed
which indicates that the relaxation times at this temperature are outside the time window
of both IRIS and MIBEMOL. Apparently, these two jump processes are governed by
activation energies.

• The elastic scattering on IRIS reveals that the Cu atoms are also jumping between
substitutional and nearest interstitial sites with a residence time less than about 10 ps.

• The quasielastic scattering on IRIS reveals the existence of structures existing long enough
to give rise to diffuse coherent scattering. This can be concluded from the fact that the
quasielastic intensity is drastically decreasing when Q approaches a reciprocal lattice
point. The lifetime of a configuration of atoms on interstitial octahedral sites is of the
order of 75 ps. At low temperature no quasielastic scattering is observed within the
experimental accuracy. It can thus be concluded that at low temperature the atoms are
jumping on an individual basis while with increasing temperature the jumps are more and
more correlated. The magnitude of the quasielastic (diffuse) scattering is thus expected to
increase with temperature while its width in energy andQ should be relatively temperature
independent.

• The Huang scattering present in the diffraction data at high temperatures shows that the
atomic jump motions in the lattice create a long-range distortion field in the [200] direction
in the crystalline lattice. The associated activation energy is 0.6 eV, which is very close
to the activation enthalpy for both vacancy formation and for atomic migration in the
aluminium lattice.

• All atomic motions on a time scale up to about 100 ps are local. No sign of the existence
of long-range diffusion or of an atomic diffusion process within a cage has been observed.
This sets the upper limit for the self diffusion coefficient to about 10−7 cm2 s−1. It should,
however, be added that theQ range in the present experiments might have been too small
to reveal such a motion.

• Both the space and the time evolvement of the atomic diffusive motions in the ternary
Al50Cu35Ni15 alloy is very similar to what has been found in ternary alloys with
quasicrystalline and quasicrystalline-like local order. From the results presented above it
can thus be concluded that frequent atomic jumps between interstitial positions are likely
to take place on a picosecond time scale in any alloy above a certain relative vacancy
concentration and it is not a characteristic feature of quasicrystals. This is in agreement
with findings of Mehrer and coworkers [17, 18]. A general conclusion then is that the
mechanism of atomic motions, at least in Al-based ternary compounds, is also independent
of their periodic or aperiodic structure.
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